Image

Finally, an Atomic Standard for Temperature

March 16, 2016
At an American Physical Society meeting in Baltimore, MD, the NIST presented a system that precisely measures the vibrations of silicon-nitride molecules in response to changes in temperature. The measurement tool is calibrated by comparing thermal vibrations to quantum vibrations.

In 2014, after a decade of development, the National Institute of Standards and Technology (NIST) presented the world with its most accurate clock known to science. The atomic clock measures the vibrations of cesium atoms to give our automatic time-telling gadgets, such as cell phones, a precise standard for setting the time.

Today, at an American Physical Society meeting in Baltimore, Md., the organization presented a system that precisely measures the vibrations of silicon-nitride molecules in response to changes in temperature, ranging from cryogenic to room temperature. The effort may lead to high-accuracy temperature readings in extremely sensitive lab applications and industry procedures.

The method employs a beam of silicon nitride with small reflective cavities. The scientists directed a laser through a thin crystal beam, and measure the changes in reflected wavelength, which they could directly relate to the picometer-scale thermal vibrations.

But what makes the method so dependable is the scientists' ability to calibrate the thermal vibrations to fluctuations in electron spin, which remain constant independent of temperature.  Since both vibrations are measured using the same laser, any measurements that indicate changes in quantum vibrations would also indicate an error in the readings for thermal vibration. 

Even at temperatures near absolute Kelvin, where atoms have insignificant thermal vibration, the uncertainty of an electron's position in its quantum state causes very small vibrations. A simple recap of the phenomena is provided in a video from my favorite YouTube channel, Sixty Sigma.

About the Author

Leah Scully | Associate Content Producer

Leah Scully is a graduate of The College of New Jersey. She has a BS degree in Biomedical Engineering with a mechanical specialization.  Leah is responsible for Machine Design’s news items that cover industry trends, research, and applied science and engineering, along with product galleries. Visit her on Facebook, or view her profile on LinkedIn

Sponsored Recommendations

Harmonic Drive Actuators with Integrated Drive Technology

Jan. 17, 2025
Discover the future of motion control.In this video, we explore how integrated drive technology (IDT) from Harmonic Drive is revolutionizing the precision mo...

7 factors to Consider When Choosing the Right Gear Technology

Jan. 17, 2025
Choosing a drive involves several design factors that depend greatly on the task at hand. This top 7 list will guide you, whether your task requires precise and exact movements...

What are the Benefits of Actuators with Integrated Servo Drives?

Jan. 17, 2025
Actuators with Integrated Servo Drive Technology (IDT) simplify cable management, control hardware, and commissioning while achieving outstanding performance in a compact size...

Customizations to Get Standard Motors to Mars

Jan. 10, 2025
Clearly, the Martian environment can be harsh and unaccommodating to systems made to operate on Earth. Through a combination of standard industrial motors and creative collaboration...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!