New developments on the turbine-power front

May 25, 2006
Alternative energy is in the headlines thanks to recent efforts to generate electricity from the tides and wind.

Inventor Doug Selsam's turbine produces power in 9-mph winds and puts out an average 1 kW at 25 mph (24-V nominal).


Marine Current Turbines place two generating units on an arm that can rise out of the water for service.


Marine Current Turbines Ltd., England, develops turbines that work much like submerged windmills. They can sit in the sea where tidal currents are strong. The submerged turbines can each put out 750 to 1,500 kW depending on the local flow pattern and peak velocity. A company goal is to deploy them in arrays or farms.

MCT turbines consist of twin axial-flow rotors of 15 to 20-m diameter, each driving a generator. The twin power units mount on winglike extensions either side of a 3-m tubular tower set into the seabed. Turbines and power units can be hoisted up above sea level for maintenance. This eliminates underwater work by divers or remotely operated vehicles.

The design's environmental impact is considered negligible. The rotors turn slowly, 10 to 20 rpm, and stay in one place, so marine creatures can easily avoid them.

A 10-MW tidal farm under consideration will supply energy to about 5,500 homes. Commercially available units are scheduled for next year.

In another development, inventor Douglas Selsam has introduced a two-rotor, 7-ft-diameter wind generator that produces up to 1 kW. Selsam says the second rotor on his Superturbine ST 1.2 will exceed the output of other 7-ft-diameter turbines, even when his sits on a shorter tower, a distinct advantage in locales with height restrictions. "It's good practice to get a turbine as high as possible, but a tall tower may not be an option," says Selsam. "The extra rotor is more effective than doubling tower height in most locations and uses less material."

The design puts both rotors on the same shaft and then tilts it a bit so they both catch fresh wind. The result is power output equaling that of a 14-ft-diameter turbine, says Selsam. Unidirectional carbon-fiber blades operate quietly and efficiently at all speeds, he adds. Electrical power comes from a three-phase alternator using rare-earth supermagnets to produce 100 A at 12, 24, or 48 V. Side furling and a shock absorber lets the blades turn out of high wind for overspeed protection over 30 mph.

MAKE CONTACT
Marine Current Turbines,
marineturbines.com
Superturbine Inc.,
selsam.com

Sponsored Recommendations

MOVI-C Unleashed: Your One-Stop Shop for Automation Tasks

April 17, 2024
Discover the versatility of SEW-EURODRIVE's MOVI-C modular automation system, designed to streamline motion control challenges across diverse applications.

Navigating the World of Gearmotors and Electronic Drives

April 17, 2024
Selecting a gearmotor doesn’t have to be a traumatic experience. The key to success lies in asking a logical sequence of thoughtful questions.

The Power of Automation Made Easy

April 17, 2024
Automation Made Easy is more than a slogan; it signifies a shift towards smarter, more efficient operations where technology takes on the heavy lifting.

Lubricants: Unlocking Peak Performance in your Gearmotor

April 17, 2024
Understanding the role of lubricants, how to select them, and the importance of maintenance can significantly impact your gearmotor's performance and lifespan.

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!