Courtesy of Lawrence Livermore National Laboratory
Because the Dynamic Transmission Electron Microscope (DTEM) can capture processes at high temporal resolutions at the near-atomic level—as small as 10 nm, or 100 angstrom—it has proven useful for capturing rapid intermediate steps in reactions found in chemistry, biology, and materials science.

Capturing Phase Transitions in Alloy Processing at Near Atomic Level

Aug. 3, 2016
The world's only Dynamic Transmission Electron Microscope will be enable us to observe rapid phase transitions in aluminum alloys.

Under a $500,000 grant from the National Science Foundation, engineers at the University of Pittsburgh will use the Dynamic Transmission Electron Microscope (DTEM) at Lawrence Livermore National Laboratory (LNLL) to observe rapid phase transitions in aluminum alloys under laser and electron-beam processing. The study is expected to deliver valuable data and computer-modelling capabilities to the metal-additive manufacturing industry.

Characteristic to transmission electron microscopes (TEMs), the DTEM allows scientists to observe objects to near atomic level, down to the order of a few angstroms. Synonymous to the way light microscopes observe scales limited by the wavelength of the photons in that particular light spectrum, a person can use a TEM to view objects as small as the wavelength of an electron. (The De Broglie wavelength of an electron at 1-eV kinetic energy is about 1.23 nm, while a photon's wavelength in the visible-light spectrum is much bigger, ranging between 400 and 700 nm.)

Perhaps the most outstanding feature of the DTEM, though, is its high temporal resolution. While scientists are better inclined to determine the beginning and end products of catalytic and multistep reactions, they often remain ambivalent about the state of reactants during intermediate steps. With nanosecond and microsecond temporal resolution, the DTEM will enable the university’s engineering students to observe various rapid transitions of aluminum alloys during welding, joining, and other processes.

Joe McKeown, LLNL materials scientist, explains, "DTEM allows you to see the interface between the solid and liquid during rapid solidification, which is extremely hard to do."

Students will begin to use the DTEM at LLNL this fall. "Prior to the advent of the DTEM, we could only simulate these transformations on a computer," Wiezorek said in a news release. "We hope to discover the mechanisms of how alloy microstructures evolve during solidification after laser melting by direct and locally resolved observation."

For more information about LLNL’s DTEM, download the article “A Bright Idea for Microscopy” (PDF file).

Sponsored Recommendations

The Digital Thread: End-to-End Data-Driven Manufacturing

May 1, 2024
Creating a Digital Thread by harnessing end-to-end manufacturing data is providing unprecedented opportunities to create efficiencies in the world of manufacturing.

Medical Device Manufacturing and Biocompatible Materials

May 1, 2024
Learn about the critical importance of biocompatible materials in medical device manufacturing, emphasizing the stringent regulations and complex considerations involved in ensuring...

VICIS Case Study

May 1, 2024
The team at VICIS turned to SyBridge and Carbon in order to design and manufacture protective helmet pads, leveraging the digitization and customization expertise of Toolkit3D...

What's Next for Additive Manufacturing?

May 1, 2024
From larger, faster 3D printers to more sustainable materials, discover several of the top additive manufacturing trends for 2023 and beyond.

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!