low power temperature sensor

Low-Power Temperature Sensors Bring the Heat

Oct. 8, 2017
The sensors replace traditional thermistors with two gate-tunneling transistors, one of which has temperature-dependent intrinsic properties and the other remaining constant.

A low-power temperature sensor currently under development at the University of San Diego might lead to sleeker temperature-sensing devices and designs used in wearables, diagnostic sensors for the industrial Internet of Things, and healthcare. The sensors would eliminate the need for bulky power supplies like batteries, and last years without having to be recharged.

The technology, still in its research phase, takes advantage of a phenomenon called the quantum tunneling effect, which allows very small quantities of electrons to leak through potential barriers in ultra-thin transistors. Though very small, this leakage current is enough to charge two capacitors at reference and temperature-dependent rates, as enabled by the one transistor's temperature-dependent intrinsic properties. It uses two gate-leakage metal-oxide semiconductor transistors (MOSFETs).

One tradeoff of the low-power design is the relatively low response time of up to 1 temperature reading per second. The team is still developing their technology to address its limitations, but for now, it stands out as pretty impressive. Pictured above, it was integrated onto a very small silicon chip no larger than 0.15 square millimeters.

A further explanation of the research can be read in the paper, “Near-Zero-Power Temperature Sensing via Tunneling Channels Through Complementary Metal-Oxide-Semiconductor Transistors” by Hui Wang and Patrick P. Mercier, published in the journal, Nature.

About the Author

Leah Scully | Associate Content Producer

Leah Scully is a graduate of The College of New Jersey. She has a BS degree in Biomedical Engineering with a mechanical specialization.  Leah is responsible for Machine Design’s news items that cover industry trends, research, and applied science and engineering, along with product galleries. Visit her on Facebook, or view her profile on LinkedIn

Sponsored Recommendations

Safety Risk Assessment Guidelines for Automation Equipment

Dec. 20, 2024
This Frequently Asked Questions (FAQ) covers the basics of risk assessments, including the goals of the assessment, gathering the right team to perform them, and several methodologies...

Safety Products Overview

Dec. 20, 2024
The collection of machine safeguarding devices from Schmersal include keyed interlocks, solenoid locks, safety sensors, limit switches, safety light curtains and more.

SAFER Workplace: Stop, Assess, Formulate, Execute, Review

Dec. 20, 2024
Our SAFER Workplace initiative promotes workplace safety, with a heightened focus on machine safety, to reduce the potential of near misses, accidents, and injuries. Behaving ...

The advantages of a Built-in Bluetooth Interface for Your Safety Light Curtains

Dec. 20, 2024
Safety Light Curtains with Bluetooth InterfaceGuido Gutmann, Key Account Manager, Optoelectronic Safety Devices, Schmersal Group, explains the advantages of ...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!