Machinedesign 6619 107msd Intel Flash 0 0

Piezos in semiconductor manufacturing

July 1, 2011
Miniscule chips require immense precision Moore's Law states that computing power on integrated circuits (ICs) grows exponentially doubling every two

Miniscule chips require immense precision

Moore's Law states that computing power on integrated circuits (ICs) grows exponentially — doubling every two years. First observed in 1965, this increase of transistor sensing, memory, and processing capabilities continues unabated. So how do chip engineers consistently cram more functionality onto increasingly tiny chips?

One essential ingredient is motion designs capable of executing the nanoscale tasks required for new chip manufacture.

Conventional mechanical positioners are insufficient, because chip-production mechanisms and motion controls must provide precision 10 to 1,000 times higher than feature size — so error and vibrations must be kept to less than 0.1 nm.

In contrast, piezo-based designs are appropriate: These ceramic solid-state devices convert electrical energy directly into linear motion, so gone are the wear, play, friction, and backlash of rotary-to-linear mechanical elements such as gears and leadscrews. Consider one example pictured above — the N-310 NEXACT PiezoWalk linear drive from Physik Instrumente, Auburn, Mass. The 25 × 25 × 12 mm unit delivers travel to 125 mm and push (or pull) force to 10 N.

However, semiconductor manufacturing and wafer-inspection applications benefit most dramatically from the unit's resolution, so typical for a piezo device: Depending on the drive electronics, open-loop resolution reaches 0.03 nm.

SEMICON West 2011

SEMICON West 2011 will be held July 11 to 14 at the Moscone Center, San Francisco. This annual event showcases new technologies for microelectronics design and manufacturing, including design automation, device fabrication, and manufacturing — including assembly, packaging, and testing. Other topics include micro-electromechanical systems (MEMS), photovoltaics (PV), flexible electronics and displays, nano-electronics, and LEDs. For more information, visit semiconwest.org.

Sponsored Recommendations

The Digital Thread: End-to-End Data-Driven Manufacturing

May 1, 2024
Creating a Digital Thread by harnessing end-to-end manufacturing data is providing unprecedented opportunities to create efficiencies in the world of manufacturing.

Medical Device Manufacturing and Biocompatible Materials

May 1, 2024
Learn about the critical importance of biocompatible materials in medical device manufacturing, emphasizing the stringent regulations and complex considerations involved in ensuring...

VICIS Case Study

May 1, 2024
The team at VICIS turned to SyBridge and Carbon in order to design and manufacture protective helmet pads, leveraging the digitization and customization expertise of Toolkit3D...

What's Next for Additive Manufacturing?

May 1, 2024
From larger, faster 3D printers to more sustainable materials, discover several of the top additive manufacturing trends for 2023 and beyond.

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!