Machinedesign 6035 11384ee1 Enidinea 1

Case study: Dampers protect dams from vibrations

Aug. 29, 2013
When forces are transmitted through a water tubine’s bearings, they can weaken the dam’s civil structure and lead to catastrophic failure. VES shocks on a retrofitted Ruili River turbine prevent this problem.

Special shock absorbers on hydroelectric turbine shafts are helping to prevent the catastrophic failure of a dam in southeast Asia.

Some power-plant operators mitigate shock and vibration by strengthening turbine structures, though this increases cost and only postpones problems. VES shock absorber dissipate shocks and vibrations, increasing generator efficiency and turbine life.

The hydroelectric generator, designed by Harbin Electric Machinery Co., Harbin, China, is several stories tall and houses six 100-MW turbines. Each turbine has a vertically mounted central steel shaft about 3 m in diameter. Paddle blades at the bottom turn the shaft as water flows past. The top of the shaft fits through a guide bearing mounted on the dam’s concrete support structure. This upper bearing stabilizes the top of the turbine and is subject to extreme forces.

The inset photo is one of several VES shock absorbers positioned between a support structure and an upper guide bearing inside a generator at the Ruili River Hydropower Station.

During operation, turbulent water flow over the shaft’s paddles sends vibrations up through the shaft. What’s more, the turbine shaft thermally expands a few micrometers during normal operation, magnifying the effect of normal deflections. When these forces travel through the bearing to the fixed supports, they can weaken the dam’s structure.

To prevent this problem, engineers retrofitted the shaft with Visco-Elastic Support (VES) shock absorbers from ITT Enidine Inc., Orchard Park, N. Y. The shocks sit between the guide bearing spokes and the inner diameter of the support structure. A plunger is attached along the main axis of vibration transmission. When forced or loaded, the plunger compacts a chamber filled with a high-viscosity silicon elastomer. The elastomer, a fluid, absorbs shock and vibration energy.

“We use the shocks because the turbines run faster and vibrate more than traditional turbines,” says Dr. Su Zhong, chief architect and chief engineer at Harbin’s Institute of Large Electrical Machinery. The turbines, sitting on Myanmar’s Ruili River have small diameters to save on cost, but that means they turn at 200 rpm or more — compared to only 50 to 100 rpm or so for larger,more traditional turbines. When the Ruili River’s water is high, the dam’s turbines spin faster and vibrate even more. “The VES shocks cut transmitted turbine vibration by half,” says Zhong.

Work to retrofit the other Ruili River generators with VES dampers continues.

Resources: Enidine Dampers

Sponsored Recommendations

MOVI-C Unleashed: Your One-Stop Shop for Automation Tasks

April 17, 2024
Discover the versatility of SEW-EURODRIVE's MOVI-C modular automation system, designed to streamline motion control challenges across diverse applications.

The Power of Automation Made Easy

April 17, 2024
Automation Made Easy is more than a slogan; it signifies a shift towards smarter, more efficient operations where technology takes on the heavy lifting.

Lubricants: Unlocking Peak Performance in your Gearmotor

April 17, 2024
Understanding the role of lubricants, how to select them, and the importance of maintenance can significantly impact your gearmotor's performance and lifespan.

From concept to consumption: Optimizing success in food and beverage

April 9, 2024
Identifying opportunities and solutions for plant floor optimization has never been easier. Download our visual guide to quickly and efficiently pinpoint areas for operational...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!