Scanning for Ideas: Magnetic brake’s microcontroller eliminates cogging and nonlinearity

May 10, 2012
Magnetic brakes have suffered from hysteresis, cogging, and low-power output for over 30 years. And they have lacked linearity, so users had to more than double

Magnetic brakes have suffered from hysteresis, cogging, and low-power output for over 30 years. And they have lacked linearity, so users had to more than double the input signal to double the output force of the brake. To solve these problems, engineers at Magnetic Brake Systems, Camarillo, Calif., designed a new type of magnetic brake. It uses a microcontroller to ensure output torque is linear with input signals, regardless of whether the control signal is increasing or decreasing.

The same microcontroller eliminates cogging which, on some magnetic brakes, can be as high as 25% of the brake’s maximum torque. The microcontroller ensures that within 500 msec after the input signal goes to zero, cogging disappears — and with no rotation of the brake drag ring.

The brakes can exert constant tension instead of constant torque, which is useful for unwinding wire or films from variable-diameter feed rolls. To do this, the microcontroller monitors the radius of the feed roll by measuring the time between pulses created by Hall-effect devices and magnets on the feed spindle and metering roller.

The brakes use an internal, centrifugal cooling fan and ventilation slots to keep the brakes cool. For example, the MBL-5.5, with a 5.5-in. OD, can dissipate 4,700 W for 10 sec; on a continuous basis, it can dissipate 1,700 W at 8,000 rpm. The brakes come with outside diameters ranging from 1.5 to 12 in., and handle 4,000 to 20,000 rpm. The brakes are powered by a 24-V power supply.

© 2012 Penton Media, Inc.

Sponsored Recommendations

Customizations to Get Standard Motors to Mars

Jan. 10, 2025
Clearly, the Martian environment can be harsh and unaccommodating to systems made to operate on Earth. Through a combination of standard industrial motors and creative collaboration...

No Access for Bacteria: An Inside Look at Maxon's Cleanroom

Jan. 10, 2025
Tiny drive systems for use in the human body have to be built in a clean environment, free of microbiological contamination. Welcome to the GMP cleanroom of maxon, where discipline...

High-Efficiency, Precision Drive Systems for Every Robot

Jan. 10, 2025
Robots assemble devices, explore space, and perform surgeries. To achieve human-like motion and accuracy they need powerful and highly precise drives. Learn about custom-made ...

The Importance of Motors in Transportation

Jan. 10, 2025
As we progress toward more efficient and automated systems, the need for robust and reliable motors in the transportation industry has become more critical than ever. Explore ...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!