Your next table lamp could be a laser

Feb. 9, 2012
Combine blue, red, green, and yellow laser light and you will get white light, but perhaps a white light you wouldn’t want illuminating your living room

Resources
Sandia National Laboratory

Combine blue, red, green, and yellow laser light and you will get white light, but perhaps a white light you wouldn’t want illuminating your living room. It’s long been thought that the extremely narrow band of wavelengths generated by the four lasers would create a harsh white light consumers would find unpleasant and uncomfortable.

But researchers at Sandia National Laboratory wanted to see if this was indeed true. So they conducted a survey in which participants looked at images illuminated with white light from one of five different sources: LEDs producing warm, cool, and neutral light; a tungsten-filament incandescent light bulb; and four lasers tuned to produce white light. Participants reported no significant difference between the light from the incandescent, the neutral LED, and the combination of four laser lights. Interestingly, they also put the cool and warm LEDs at the bottom of the list for ease of viewing and realism.

The Sandia researchers think the results could lead lighting engineers to develop laser-based home and industrial lighting. Laser diodes are more expensive to make than ordinary LEDs because their substrates must have fewer defects. But substrate quality, which also affects LED performance, has been constantly improving. There are also problems with the performance of yellow and green lasers. And while red lasers perform better, they are not as good as blue lasers, which are now good enough to let BMW use them in its next-generation white headlights.

The performance disparity could be addressed by creating hybrid lights — white lights that use lasers and ordinary LEDs. For example, blue and red diode lasers could be combined with yellow and green LEDs.

The advantage of laser diodes is that they can handle electrical currents above 0.5 A and create more light efficiently as the electric current increases. LEDs, on the other hand, lose efficiency at currents over 0.5 A.

© 2012 Penton Media, Inc.

Sponsored Recommendations

Safeguarding Robots and Robot Cells

Dec. 23, 2024
Learn which standards are relevant for robot applications, understand robot functionality and limitations and how they affect typical methods of safeguarding robots, and review...

Automation World Gets Your Questions Answered

Dec. 23, 2024
Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.

Basic OSHA Requirements for a Control Reliable Safety Circuit

Dec. 23, 2024
Control reliability is crucial for safety control circuits. Learn about basic wiring designs to help meet OSHA, Performance Level (PL), and Safety Integrity Level (SIL) requirements...

Safety Risk Assessment Guidelines for Automation Equipment

Dec. 20, 2024
This Frequently Asked Questions (FAQ) covers the basics of risk assessments, including the goals of the assessment, gathering the right team to perform them, and several methodologies...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!