Self-aware robot adapts to injury

Jan. 11, 2007
Researchers at Cornell University have built a four-legged robot that changes its programming to adapt to injury.

Cornell University robot develops a new gait when one of its four legs is removed.

The underlying algorithm, according to the team, could be used to build more complex robots that can deal with uncertain situations, like space exploration, and may help in understanding human and animal behavior.

The robot works out how to control itself in a process similar to the way human and animal babies discover and manipulate their bodies. The ability to build this "self-model" is what makes it able to adapt to injury.

The robot, which looks like a four-legged starfish, starts out knowing only what its parts are, not how they are arranged or how to use them to move forward, its pre-programmed goal. It applies the scientific method — theory followed by experiment followed by refined theory — to learn how to walk.

The robot begins by building a series of models of how its parts might be arranged, at first just putting them together randomly. Then it develops commands to send to its motors and test the models. A key step, the researchers say, is the selection of commands most likely to produce different results depending on which model is correct. It executes those commands and revises the models based on results. This cycle repeats 15 times before it attempts to move.

"The robot does not have a single model of itself, but many. The models compete for the best explanation of past experiences," says Hod Lipson, Cornell assistant professor mechanical and aerospace engineering. The result is usually an ungainly but functional gait. The most effective gait so far is a sort of inchworm motion with the robot alternately moving its legs and body.

When the team removes one of the robot's legs, it again builds and tests 16 simulations to develop a new gait. Researchers limit the test cycles with space exploration in mind. "You don't want an injured robot on Mars thrashing around in the sand, causing more damage," says team member Josh Bongard of the University of Vermont. Cornell graduate student Viktor Zykov is also a team member.

Sponsored Recommendations

Safeguarding Robots and Robot Cells

Dec. 23, 2024
Learn which standards are relevant for robot applications, understand robot functionality and limitations and how they affect typical methods of safeguarding robots, and review...

Automation World Gets Your Questions Answered

Dec. 23, 2024
Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.

Basic OSHA Requirements for a Control Reliable Safety Circuit

Dec. 23, 2024
Control reliability is crucial for safety control circuits. Learn about basic wiring designs to help meet OSHA, Performance Level (PL), and Safety Integrity Level (SIL) requirements...

Safety Risk Assessment Guidelines for Automation Equipment

Dec. 20, 2024
This Frequently Asked Questions (FAQ) covers the basics of risk assessments, including the goals of the assessment, gathering the right team to perform them, and several methodologies...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!