Nanopore gene detector

Nov. 22, 2006
The sequencing of DNA molecules has historically been a time-intensive process.

But University of Illinois researchers have come up with a way to sequence DNA in real time. The technique uses a nanoscale pore in an ultrathin membrane capacitor. The pore has two ring-electrode collars. It turns out individual base pairs of a DNA molecule have different dielectric constants, or electrical resistivities. These can induce unique voltage changes in the electrodes as the DNA moves through the pore. Should these electrical "signatures" be associated with specific base pairs, biologists could discriminate among them quickly and inexpensively.

The researchers used electron beam decomposition and sputtering to make the 0.34-nm-wide pores in MOS capacitor membranes less than 40-nm thick. Ions are created when the membrane is immersed in an electrolyte with a dc voltage across it. DNA molecules are also ionic and therefore attracted to the pore and forced through it. Molecules transiting the pore induce a measurable voltage change at the ring electrodes.

Sensitivity and bandwidth of the device aren't yet sufficient for practical devices though results are promising, say researchers.

Sponsored Recommendations

Flexible Power and Energy Systems for the Evolving Factory

Aug. 29, 2024
Exploring industrial drives, power supplies, and energy solutions to reduce peak power usage and installation costs, & to promote overall system efficiency

Timber Recanting with SEW-EURODRIVE!

Aug. 29, 2024
SEW-EURODRIVE's VFDs and gearmotors enhance timber resawing by delivering precise, efficient cuts while reducing equipment stress. Upgrade your sawmill to improve safety, yield...

Advancing Automation with Linear Motors and Electric Cylinders

Aug. 28, 2024
With SEW‑EURODRIVE, you get first-class linear motors for applications that require direct translational movement.

Gear Up for the Toughest Jobs!

Aug. 28, 2024
Check out SEW-EURODRIVEs heavy-duty gear units, built to power through mining, cement, and steel challenges with ease!

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!