Machinedesign Com Sites Machinedesign com Files Uploads 2013 04 Mechanical Cams Radial Versus Cylindrical 1

Motion Design 101: Mechanical cam types and operation

Oct. 1, 2000
Cams convert ordinary shaft rotation into a more complicated pattern of motion. Learn about the two subtypes.
Cams convert ordinary shaft rotation into a more complicated pattern of motion. This is accomplished by keeping one or more followers in contact with the surface of a rotating cam. The follower may move as a slider, reciprocating in a linear direction, or as a rocker, oscillating around a fixed pivot.

There can be overlapping functionality between cams and linkages (such as crank-rockers). Where this overlap occurs, the cam usually provides the quicker design solution while presenting a more difficult manufacturing prospect. However, cams go beyond the function of linkage mechanisms, allowing a tremendous range of possibilities for the output motion.

Depending on the application, the follower may be required to perform some tricky maneuvers. In a simple case, it may have to move to a critical position "on time" while maintaining velocity and/or acceleration parameters, hold this position, or dwell, for a set time, and return to the original position under a different set of velocity/acceleration parameters. This could represent one cycle of the input shaft.

Questions & answers

Q: What are the pros and cons of the different follower contacts?

A: Rolling followers are versatile, durable, and readily available. Followers that slide along the cam, such as flat-faced or pointed, generate more friction than rolling followers, but are attractive due to size and simplicity. Flat-faced followers resist jamming, but cannot trace concave cam profiles. Pointed followers can be useful for detailed cam profiles, but are subject to wear and generate high contact stress.

Q: Which is preferable, rocker or slider motion?

A: A translating follower (slider) can often rotate freely about its shaft. This can be used to help distribute wear by offsetting a flat-faced follower. A follower with a wheel-type contact, though, must remain aligned. Rocker followers often approximate straight-line motion adequately while remaining fixed about their arms.

Consider this plot of cam dynamics: Cam design requires you to keep sight of the follower displacement and the first, second, and third derivatives: velocity, acceleration, and jerk. In a valid follower motion, the velocity and acceleration will remain continuous throughout the cycle — otherwise the device produces an impossible, infinite amount of jerk. Obviously, the follower begins and ends the cycle at the same position. Once a suitable output motion is defined, the profile of the cam itself can be generated, often through special software. The diagram depicts an acceptable example of a single-dwell cycle.

Q: What if I want both axial and radial follower motion?

A: Combined axial-radial cams are not unheard of. They are sometimes called three-dimensional cams or camoids.

About the Author

Elisabeth Eitel

Elisabeth Eitel was a Senior Editor at Machine Design magazine until 2014. She has a B.S. in Mechanical Engineering from Fenn College at Cleveland State University.

Sponsored Recommendations

Revolution for bionic prostheses

March 31, 2025
Unlike passive products - made of simple carbon springs - the bionic prostheses developed by Revival Bionics are propulsive, equipped with a motor and an artificial Achilles tendon...

State-of-the-art Drive Technology in Industrial Automation and Robotics

March 31, 2025
Electric drives are a key technology for the performance of machines, robots, and power tools. Download this guide for an introduction to high-quality mechatronic drive systems...

The perfect drive solution is just a few clicks away

March 31, 2025
Discover the world of maxon drive technology: motors, gearheads, sensors, controllers, and accessories. Configure your drive system online, including all relevant product and ...

Drone powered by solar energy

March 31, 2025
Share current page XSun designs and manufactures a drone that is both energy-independent and can make its own decisions, for fully-automated missions. The company needed reliable...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!