Levent Beker
Pressure sensor

Wireless, Battery-Free Sensor Monitors Blood Flow

Jan. 19, 2019
Transforming super-sensitive touch sensors, engineers build an implantable blood-flow sensor that is biodegradable.

A new device developed by Stanford University engineers should make it easier for doctors to monitor the success of blood-vessel operations. The sensor monitors the flow of blood through an artery. It is biodegradable, battery-free, and wireless, so it is compact, doesn’t need to be removed in a separate operation, and can warn a patient’s doctor if there is a blockage.

“Measuring blood flow is critical in many medical specialties, so a wireless sensor could help in vascular, transplant, reconstructive and cardiac surgery,” says Paige Fox, assistant professor of surgery.

Monitoring the success of surgery on blood vessels is challenging as the first sign of trouble often comes too late. By that time, the patient often needs additional surgery that carries risks similar to the original procedure. This new sensor could let doctors keep tabs on a healing vessel from afar, creating opportunities for earlier interventions.

The sensor wraps snugly around the healing vessel, where blood pulsing past pushes on its inner surface. As the shape of that surface changes, it alters the sensor’s capacity to store electric charge, which doctors can detect remotely from a device located near the skin but outside the body. That device solicits a reading by pinging the sensor’s antenna, like an ID card scanner. In the future, this device could come in the form of a stick-on patch or be added into a wearable device or smartphone.

The researchers first tested the sensor in an artificial setting where they pumped air through an artery-sized tube to mimic pulsing blood flow. It was also implanted in a rat. Even at such a small scale, the sensor successfully reported blood flow to the wireless reader. Despite the fact the researchers were only interested in detecting complete blockages during these early trials, they did see indications that future versions of the sensor could identify finer fluctuations of blood flow.

The sensor is a wireless version of technology that a Stanford engineer has been developing to give prostheses a delicate sense of touch.

Researchers had to modify the sensor’s materials to make it sensitive to pulsing blood but rigid enough to hold its shape. They also had to move the antenna to a location where it would be secure and unaffected by the pulsation, and to re-design the capacitor so it could be placed around an artery.

The researchers are now investigating way to affix the sensors to the vessels and refining their sensitivity.

Sponsored Recommendations

Diaphragm Pump Technology Drives Industrial Washers

Jan. 23, 2025
Discover high-performance pumps and systems built to handle various gases, liquids, and chemicals with precision.

Harmonic Drive Actuators with Integrated Drive Technology

Jan. 17, 2025
Discover the future of motion control.In this video, we explore how integrated drive technology (IDT) from Harmonic Drive is revolutionizing the precision mo...

7 factors to Consider When Choosing the Right Gear Technology

Jan. 17, 2025
Choosing a drive involves several design factors that depend greatly on the task at hand. This top 7 list will guide you, whether your task requires precise and exact movements...

What are the Benefits of Actuators with Integrated Servo Drives?

Jan. 17, 2025
Actuators with Integrated Servo Drive Technology (IDT) simplify cable management, control hardware, and commissioning while achieving outstanding performance in a compact size...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!