Phuchit/Dreamstime
Closeup of ball screw

The Basics of the Three Speeds of Ball Screws

May 30, 2023
A look at the three important speeds when it comes to these essential motion control devices.

This article was updated May 30, 2023. It was originally published March 20, 2017.

Speed is an important characteristic in ball screws, as it is for most motion control devices. But ball screws have three kinds of speed associated with them: critical speed, maximum speed and driving speed. Here’s a quick look at all three.

Critical Speed

Critical speed, nk, is the lowest rotational speed at which the ball-screw shaft is in resonance. In applications with rotating shafts, it limits the screw’s rpm. Variables that influence critical speed include the shaft diameter, unsupported length and the support bearings.

Similar to buckling, critical speed depends on how the support bearings are laid out. Fixed support bearings are assumed to resist angular deflection of the shaft, while simple support bearings do not. A bearing assembly of two simple bearings with a spacer, however, qualifies as a “fixed” bearing for these purposes.

For long screws, use the following equation. Make sure to select the proper factor for the bearing configuration used in it for the critical speed:

nk = k × dN × 1/(ls)2 × 107/min

where dN is the screw’s  nominal diameter (mm), ls is the screw’s unsupported length (mm), and k is the support-bearing factor.

If the screw turns faster than its critical speed, it can create noise and do damage. Some engineers recommend operating balls screw at less than 80% of its critical speed.

Maximum Speed

The maximum speed is limited by inertial forces on the rolling balls, and it depends on the ball-nut’s return mechanism and ball size. In general, ball screws with small balls have somewhat lower speed limits than screws with larger balls. Steinmeyer ball screw speeds range from 4,500 rpm for 3-mm balls to about 1,050 rpm for 125-mm balls.

Driving Speed

The driving speed (DN) is a simplified way of determining the ball screw’s top rotational speed. It is simply the product of nominal diameter of the ball screw (in mm) times the maximum allowable speed (in rpm). Keep in mind that for extremely small or large screws, this will not return valid numbers.

DN lets engineers easily compare different ball screw designs. The higher the DN, the more sophisticated the ball return. DN values also correlate to ball velocity. DN is calculated by:

DN = nmax × dN

where nmax is the maximum speed (rpm) and dN is the nominal diameter (mm).

Most ball screw have maximum DN values between 60,000 and 120,000, and in some cases even higher.

RELATED

Calculating the Life of Ball and Roller Screw Actuators

Ball-Screw Design: The Advantages of Internal Ball Returns

Getting up to Speed

What’s the Difference Between Roller and Ball Screws?

Bruce Gertz was executive vice president at Steinmeyer Inc. when this article was originally published.

Sponsored Recommendations

Safeguarding Robots and Robot Cells

Dec. 23, 2024
Learn which standards are relevant for robot applications, understand robot functionality and limitations and how they affect typical methods of safeguarding robots, and review...

Automation World Gets Your Questions Answered

Dec. 23, 2024
Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.

Basic OSHA Requirements for a Control Reliable Safety Circuit

Dec. 23, 2024
Control reliability is crucial for safety control circuits. Learn about basic wiring designs to help meet OSHA, Performance Level (PL), and Safety Integrity Level (SIL) requirements...

Safety Risk Assessment Guidelines for Automation Equipment

Dec. 20, 2024
This Frequently Asked Questions (FAQ) covers the basics of risk assessments, including the goals of the assessment, gathering the right team to perform them, and several methodologies...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!