Peter Khalifah
The research team

Defects in Cathodes Could Improve Battery Performance

Feb. 26, 2020
A counterintuitive finding leads to a new plan for building better batteries.

Engineers are in search of the perfect battery, one that will give smartphones longer-operating times, let electric vehicles drive for hundreds of miles on a single charge and let utilities and consumers store renewable energy for future use. One approach to the battery problem is by improving one of its components, the cathode.

To date, the typical way to improve cathodes has been to adjust their chemical composition. But now, chemists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory have uncovered a new finding about battery performance that points to a different way to improve cathode materials.

“Instead of changing the chemical composition of the cathode, we can alter the arrangement of its atoms,” says Peter Khalifah, a research chemist at Brookhaven Lab and Stony Brook University.

Today, most cathode materials are comprised of alternating layers of lithium ions and transition metals, such as nickel. Within that layered structure there are usually a few defects. That means atoms from a transition metal can be found where a lithium ion is supposed to be and vice-versa.

“You can think of a defect as a ‘mistake’ in the perfection of the material’s structure,” Khalifah explains. “It is known that a lot of defects lead to poor battery performance, but what we’ve come to find out is that a small number of defects should improve key properties.”

Khalifah says there are two properties good cathode materials have: ionic conductivity (the lithium ions can move well) and electronic conductivity (the electrons also move well).

“A defect is like a hole poked between the lithium and transition metal layers in the cathode,” he says. “Instead of being confined to two dimensions, the lithium ions and electrons can then move in three dimensions across the layers.”

To prove this theory, Brookhaven scientists needed to precisely measure the concentration of defects in a cathode material and see how it performed.

“The concentration of defects in a cathode material varies between two and five percent,” Khalifah explains. “Prior to our work, defects could only be measured with a sensitivity of about one percent. In our work, we measured defect concentration with a sensitivity of a tenth of a percent.”

To get this precision, the scientists conducted powder diffraction analyses using data from two major DOE resources, the Advanced Photon Source (APS) at Argonne National Laboratory and the Spallation Neutron Source (SNS)at Oak Ridge National Laboratory.

Powder diffraction reveals where individual atoms are within a material by directing beams of x-rays, neutrons or electrons at the material level and studying how the beams diffract. In this project, the team conducted x-ray measurements at the APS and neutron measurements at SNS.

“This work developed a new way of visualizing structural defects and their relationship to diffraction and scattering strength,” says Saul Lapidus, a physicist at APS. “This technique will likely be used commonly in the battery community to understand defects and structural characterizations of cathode materials.”

Khalifah added, “the ability to measure the concentration of weakly scattering elements with the sensitivity of a tenth of a percent will also be useful for many other areas of research, such as measuring oxygen vacancies in superconducting materials and catalysts.”

With such accurate measurements of defect concentrations, the scientists could then examine the relationship between defects and cathode material chemistry.

Ultimately, they developed a “recipe” for achieving any defect concentration which, in the future, could guide scientists to build cathodes from more affordable and environmentally friendly materials and then tune their defect concentrations to get the best battery performance.

Sponsored Recommendations

Customizations to Get Standard Motors to Mars

Jan. 10, 2025
Clearly, the Martian environment can be harsh and unaccommodating to systems made to operate on Earth. Through a combination of standard industrial motors and creative collaboration...

No Access for Bacteria: An Inside Look at Maxon's Cleanroom

Jan. 10, 2025
Tiny drive systems for use in the human body have to be built in a clean environment, free of microbiological contamination. Welcome to the GMP cleanroom of maxon, where discipline...

High-Efficiency, Precision Drive Systems for Every Robot

Jan. 10, 2025
Robots assemble devices, explore space, and perform surgeries. To achieve human-like motion and accuracy they need powerful and highly precise drives. Learn about custom-made ...

The Importance of Motors in Transportation

Jan. 10, 2025
As we progress toward more efficient and automated systems, the need for robust and reliable motors in the transportation industry has become more critical than ever. Explore ...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!