Courtesy of Lawrence Livermore National Laboratory
Because the Dynamic Transmission Electron Microscope DTEM can capture processes at high temporal resolutions at the nearatomic levelmdashas small as 10 nm or 100 angstrommdashit has proven useful for capturing rapid intermediate steps in reactions found in chemistry biology and materials science

Capturing Phase Transitions in Alloy Processing at Near Atomic Level

Aug. 3, 2016
The world's only Dynamic Transmission Electron Microscope will be enable us to observe rapid phase transitions in aluminum alloys.

Under a $500,000 grant from the National Science Foundation, engineers at the University of Pittsburgh will use the Dynamic Transmission Electron Microscope (DTEM) at Lawrence Livermore National Laboratory (LNLL) to observe rapid phase transitions in aluminum alloys under laser and electron-beam processing. The study is expected to deliver valuable data and computer-modelling capabilities to the metal-additive manufacturing industry.

Characteristic to transmission electron microscopes (TEMs), the DTEM allows scientists to observe objects to near atomic level, down to the order of a few angstroms. Synonymous to the way light microscopes observe scales limited by the wavelength of the photons in that particular light spectrum, a person can use a TEM to view objects as small as the wavelength of an electron. (The De Broglie wavelength of an electron at 1-eV kinetic energy is about 1.23 nm, while a photon's wavelength in the visible-light spectrum is much bigger, ranging between 400 and 700 nm.)

Perhaps the most outstanding feature of the DTEM, though, is its high temporal resolution. While scientists are better inclined to determine the beginning and end products of catalytic and multistep reactions, they often remain ambivalent about the state of reactants during intermediate steps. With nanosecond and microsecond temporal resolution, the DTEM will enable the university’s engineering students to observe various rapid transitions of aluminum alloys during welding, joining, and other processes.

Joe McKeown, LLNL materials scientist, explains, "DTEM allows you to see the interface between the solid and liquid during rapid solidification, which is extremely hard to do."

Students will begin to use the DTEM at LLNL this fall. "Prior to the advent of the DTEM, we could only simulate these transformations on a computer," Wiezorek said in a news release. "We hope to discover the mechanisms of how alloy microstructures evolve during solidification after laser melting by direct and locally resolved observation."

For more information about LLNL’s DTEM, download the article “A Bright Idea for Microscopy” (PDF file).

About the Author

Leah Scully | Associate Content Producer

Leah Scully is a graduate of The College of New Jersey. She has a BS degree in Biomedical Engineering with a mechanical specialization.  Leah is responsible for Machine Design’s news items that cover industry trends, research, and applied science and engineering, along with product galleries. Visit her on Facebook, or view her profile on LinkedIn

Sponsored Recommendations

Safeguarding Robots and Robot Cells

Dec. 23, 2024
Learn which standards are relevant for robot applications, understand robot functionality and limitations and how they affect typical methods of safeguarding robots, and review...

Automation World Gets Your Questions Answered

Dec. 23, 2024
Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.

Basic OSHA Requirements for a Control Reliable Safety Circuit

Dec. 23, 2024
Control reliability is crucial for safety control circuits. Learn about basic wiring designs to help meet OSHA, Performance Level (PL), and Safety Integrity Level (SIL) requirements...

Safety Risk Assessment Guidelines for Automation Equipment

Dec. 20, 2024
This Frequently Asked Questions (FAQ) covers the basics of risk assessments, including the goals of the assessment, gathering the right team to perform them, and several methodologies...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!