Olivia Johnson and Lisa Utschig
Protein complexes

Natural Membrane Extracts Hydrogen from Water

Jan. 19, 2019
Scientists have devised a new way to make renewable fuels.

Scientists at Argonne National Laboratory have adapted a chemical reaction pathway central to plant biology to form the backbone of a new process that converts water into hydrogen fuel using energy from the sun.

The research teams have combined two membrane-bound proteins to perform a complete conversion of water molecules to hydrogen and oxygen. The work builds on an earlier examination of one of the proteins, called photosystem I, a membrane protein that uses energy from light to feed electrons to an inorganic catalyst that makes hydrogen. This part of the reaction, however, represents only half of the overall process needed for hydrogen generation.

 A second protein called Photosystem II uses energy from light to split water and take electrons from it. This protein lets the researchers take electrons from water and feed them to photosystem I.

The team embedded the two proteins in thylakoid membranes, like those found inside the oxygen-creating chloroplasts in higher plants. The membrane structurally supports both proteins and provides a direct pathway for inter-protein electron transfer, but doesn’t impede catalyst binding to photosystem I.

The Z-scheme—the technical name for the light-triggered electron transport chain of natural photosynthesis that occurs in the thylakoid membrane—works well with the synthetic catalyst.

Researchers were also able to substitute cobalt or nickel-containing catalysts for the expensive platinum catalyst that had been used in earlier studies. The new cobalt or nickel catalysts could dramatically reduce potential costs.

The next step for the research involves incorporating the membrane-bound Z-scheme into a living system. If they succeed in getting the process to work inside a living organism, hydrogen prosecution should dramatically increase.

Sponsored Recommendations

Ensure Safety with Explosion-Proof Pumps for Critical Applications

Feb. 10, 2025
For high-risk environments, reliability is paramount. Learn how KNF's explosion-proof pumps provide enhanced safety and performance in demanding OEM and process applications, ...

Revolutionizing Pump Efficiency with Advanced Drive Technology

Feb. 10, 2025
Discover how KNF’s innovative MI Motors are transforming pump intelligence and system integration. With enhanced efficiency and smarter control, this breakthrough technology optimizes...

Diaphragm Pumps Critical in Degassing for Chromatography, Inkjet Applications

Feb. 10, 2025
Effective degassing is essential for maintaining accuracy and performance in chromatography and inkjet systems. Discover how diaphragm pump technology ensures reliable, bubble...

How Changing Inlet Conditions Affect Diaphragm Pump Performance

Feb. 10, 2025
Inlet conditions can significantly impact the efficiency and reliability of diaphragm pumps. Learn how variations in pressure, temperature, and media composition influence performance...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!