518814368

Self-Healing Polymer Could Lead to Higher Resiliency in Smartphones

Feb. 6, 2018
While trying to invent a new type of glue, Japanese student, Yu Yanagisawa discovered a new species of polymer glass that can heal itself when smashed. His accidental discovery could lead to reduced e-waste in the future.

When trying to invent an adhesive, Yu Yanagisawa at the University of Tokyo discovered a polymer glass that is not only strong, but can be compressed back together when shattered under manual compression for just 30 seconds. His work was published in the journal Science and picked up by news sources across the country as a potential solution to reduce e-waste. The material is currently under development at the university and could potentially be used in smartphones so that people will not have to replace broken screens.

The material, polyether-thioureas, is a clear polymer that is electrically conductive, making it a viable material for touchscreens. Rather than using additives that make it self-adhesive when shattered, the material contains hydrogen bonds that allow it to heal more than just 2 or 3 times at room temperature. In addition, these hydrogen bonds make the material very strong. This is a breakthrough because strength tends to be a tradeoff for self-healing polymers.

“High mechanical robustness and healing ability tend to be mutually exclusive,” the researchers write. Most hard plastics are made up of long, entangled polymer chains, so it takes very high melting temperatures as high as 120 °C to untangle their polymer chains, and then controlled cooling conditions to reform their crosslinks and re-solidify them into solid polymers. 

The material achieves its high strength and self-healing capabilities through a natural zig-zag hydrogen-bonded array. When the material is broken under high strain or stress, an added structural component facilitates the exchange of hydrogen-bonded pairs between polymers under compression so it can easily heal.

Sponsored Recommendations

The Digital Thread: End-to-End Data-Driven Manufacturing

May 1, 2024
Creating a Digital Thread by harnessing end-to-end manufacturing data is providing unprecedented opportunities to create efficiencies in the world of manufacturing.

Medical Device Manufacturing and Biocompatible Materials

May 1, 2024
Learn about the critical importance of biocompatible materials in medical device manufacturing, emphasizing the stringent regulations and complex considerations involved in ensuring...

VICIS Case Study

May 1, 2024
The team at VICIS turned to SyBridge and Carbon in order to design and manufacture protective helmet pads, leveraging the digitization and customization expertise of Toolkit3D...

What's Next for Additive Manufacturing?

May 1, 2024
From larger, faster 3D printers to more sustainable materials, discover several of the top additive manufacturing trends for 2023 and beyond.

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!