Randy Montoya
Calibration sample

Getting X-rays to Image Low-Density Materials

Aug. 15, 2017
Sandia Labs has developed a way to spot defects inside low-density, hard-to-image materials.

It’s hard to get x-ray images of low-density materials, such as the tissues between bones, because x-rays just pass through like sunlight through a window. But what if you need to see areas that aren’t bone?

Engineers and material scientists at Sandia National Laboratories study a range of low-density materials, from laminate layers in airplane wings to foams and epoxies that cushion parts. So they borrowed and refined a technique being studied in the medical field, x-ray phase contrast imaging, to look inside the softer materials without taking them apart.

X-ray phase contrast imaging measures not just the number of x-ray photons that get through the sample, as in conventional x-ray imaging, but also the phase of the x-rays after they pass through. This offers a complete look at interfaces inside a structure.

In the Sandi device, an optical grating breaks up the x-ray beam into thousands of smaller, very similar x-ray beams. This wave front of beams passes through the object and then through phase and analyzing gratings to an array of detectors. By analyzing the differences between various x-rays that travelled through the object, researchers can reconstruct the paths each took and how dense the various layers or areas are. This gives them a much better view inside the object.

“For low-density materials like plastics, polymers, foams, and other encapsulants, the phase signal can be a thousand times larger than the relatively simple absorption signal of conventional x-rays,” says principal investigator Amber Dagel.

Gratings are critical to the technique, and they can be made to work with higher energy x-rays that will let the researchers peer inside samples that are denser or larger

The research team has been able to spot defects before they could cause catastrophic failures, because materials don’t perform well with voids or cracks or if they’re separating from adjacent surfaces. For example, conventional x-rays can’t see a defect called a grafoil in the laminate layers of an airplane wing without removing the protective copper mesh that diffuses energy if lightning hits the plane. And they can’t see the critically important foams and other materials that guard against shocks, high-voltage breakdowns, and thermal stresses in nuclear weapon components.

“I think it can be useful in research, when you’re trying to understand the distribution of microbeads within an epoxy or how the foam is mating with the canister it’s filling up,” says Dagel. “Is there a gap there? Or what defects can I see in my airplane wing laminate? I also think it can be used in quality assurance to find hidden cracks and voids.”

X-ray phase contrast imaging could also be used to inspect microfabrication packaging, integrated circuits, or micro-electro-mechanical components, as well as to study ceramics, polymers, chemicals, or explosives.

Sponsored Recommendations

Safeguarding Robots and Robot Cells

Dec. 23, 2024
Learn which standards are relevant for robot applications, understand robot functionality and limitations and how they affect typical methods of safeguarding robots, and review...

Automation World Gets Your Questions Answered

Dec. 23, 2024
Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.

Basic OSHA Requirements for a Control Reliable Safety Circuit

Dec. 23, 2024
Control reliability is crucial for safety control circuits. Learn about basic wiring designs to help meet OSHA, Performance Level (PL), and Safety Integrity Level (SIL) requirements...

Safety Risk Assessment Guidelines for Automation Equipment

Dec. 20, 2024
This Frequently Asked Questions (FAQ) covers the basics of risk assessments, including the goals of the assessment, gathering the right team to perform them, and several methodologies...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!