Image

Cellulose nanocrystals from plant life could lead to stronger materials

March 13, 2014
Material engineers at Purdue University are developing methods to use the nanocrystals that naturally give cellulose in trees and plants strength, lightweight, and resilience to strengthen construction materials and automotive components. Researchers modeled the nanocrystal’s atomic structure and calculated it to have a stiffness of 206 gigapascals, comparable to that of steel. The crystals measure 3 × 5 nm, making them too small to study using light microscopes.

Material engineers at Purdue University are developing methods to use the nanocrystals that naturally give cellulose in trees and plants strength, lightweight, and resilience to strengthen construction materials and automotive components. Researchers modeled the nanocrystal’s atomic structure and calculated it to have a stiffness of 206 gigapascals, comparable to that of steel. The crystals measure 3 × 5 nm, making them too small to study using light microscopes.

This illustration shows the structural details of cellulose nanocrystals.

Researchers say that these cellulose nanocrystals could become the green alternative to carbon nanotubes for reinforcing materials such as polymers and concrete. The crystals could also be used in biodegradable plastics, textiles, wound dressings, and a host of other products. The crystals could be developed from cellulose sources such as trees, plants, algae, oceangoing organisms (tunicates), and bacteria. The advantages of the cellulose material are that it is renewable, biodegradable, and carbon neutral.

Developing and processing the new materials would also be a natural outgrowth of the paper and biofuels industry, so there are already well-established technologies. For example, by-products from the paper industry are currently used to make biofuels. By adding another process, the leftovers could be turned into composite materials.

Sponsored Recommendations

Safeguarding Robots and Robot Cells

Dec. 23, 2024
Learn which standards are relevant for robot applications, understand robot functionality and limitations and how they affect typical methods of safeguarding robots, and review...

Automation World Gets Your Questions Answered

Dec. 23, 2024
Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.

Basic OSHA Requirements for a Control Reliable Safety Circuit

Dec. 23, 2024
Control reliability is crucial for safety control circuits. Learn about basic wiring designs to help meet OSHA, Performance Level (PL), and Safety Integrity Level (SIL) requirements...

Safety Risk Assessment Guidelines for Automation Equipment

Dec. 20, 2024
This Frequently Asked Questions (FAQ) covers the basics of risk assessments, including the goals of the assessment, gathering the right team to perform them, and several methodologies...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!