Image

InBody 770 Analyzes Internal Health Via Bioelectrical Impedance

April 10, 2015
With more than 15 outputs, including skeletal muscle mass and basal metabolic rate, the InBody 770 could revolutionize physical evaluations in the doctor’s office.

With more than 15 outputs, including skeletal muscle mass and basal metabolic rate, the InBody 770 could revolutionize physical evaluations in the doctor’s office.

Put your feet here. Hold this. Ok, your total body water is at 28 liters, that’s good. Your visceral fat is lower than your last checkup. Muscle mass, wow, you’ve been doing your exercises, haven’t you? These and other snippets of conversation will likely be heard in a typical setting for the InBody 770. With more than 15 outputs, including skeletal muscle mass and basal metabolic rate, it could revolutionize physical evaluations in the doctor’s office.

InBody 770 uses 8-Point tactile electrodes with a patented thumb electrode to allow alternating current to flow through the body, measuring impedance levels in the arms, legs, and trunk. Different frequency levels are used to measure factors ranging from water content to muscle mass and fat. A generated result sheet can be seen here

8-Point tactile electrodes with a patented thumb electrode allows alternating current to flow through the body, measuring impedance levels in the arms, legs, and trunk.

For example, frequencies around 50 kHz and lower are effective for measuring extracellular body water, while frequencies ranging from about 100 kHz pass through cell membranes more easily and are designed to measure total body water. 

While other Bioelectrical Impedance analysis (BIA) machines employ empirical estimations, InBody 770 directly uses impedance results to measure the body’s internal content. Its searchable database stores up to 100,000 entries. Other features include an LCD touchscreen with voice guidance, and simplified data transfer with a USB device. A winner of the iF Design Award in March 2015, InBody 770 will target hospitals, professional sports teams, and universities in particular, as well as be used for research projects.

About the Author

Leah Scully | Associate Content Producer

Leah Scully is a graduate of The College of New Jersey. She has a BS degree in Biomedical Engineering with a mechanical specialization.  Leah is responsible for Machine Design’s news items that cover industry trends, research, and applied science and engineering, along with product galleries. Visit her on Facebook, or view her profile on LinkedIn

Sponsored Recommendations

Customizations to Get Standard Motors to Mars

Jan. 10, 2025
Clearly, the Martian environment can be harsh and unaccommodating to systems made to operate on Earth. Through a combination of standard industrial motors and creative collaboration...

No Access for Bacteria: An Inside Look at Maxon's Cleanroom

Jan. 10, 2025
Tiny drive systems for use in the human body have to be built in a clean environment, free of microbiological contamination. Welcome to the GMP cleanroom of maxon, where discipline...

High-Efficiency, Precision Drive Systems for Every Robot

Jan. 10, 2025
Robots assemble devices, explore space, and perform surgeries. To achieve human-like motion and accuracy they need powerful and highly precise drives. Learn about custom-made ...

The Importance of Motors in Transportation

Jan. 10, 2025
As we progress toward more efficient and automated systems, the need for robust and reliable motors in the transportation industry has become more critical than ever. Explore ...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!