Courtesy of O.R. Laser
OR Laser39s powder nozzle and laser head can deposit alloy coatings onto sensors without damaging them

3D-Printing Deposition Method Augments Sensor Durability

Aug. 9, 2016
O.R. Laser's powder nozzle and laser head can deposit alloy coatings onto sensors without damaging them.

Additive manufacturing can be a powerful weapon in producing durable outer protection for sensors used in high-pressure environments, such as pipelines in the gas and oil industry. These coatings significantly improve sensor useful life despite sheer stresses and pressures on the magnitudes of hundreds of bars.

One company that takes the additive-manufacturing route is O.R. Lasertechnologie. To create such coatings, the company’s R&D team invented a powder nozzle that deposits Stellite, a cobalt-chromium-based alloy, onto the sensors. Using a compact EVO mobile laser welding system, they deposit Stellite powder coaxially with the laser beam at deposition rates as high as 5000 mm3/h.

Stellite is traditionally difficult to machine onto sensor surfaces—the intense heat during layer deposition causes the sensor material and the Stellite to melt together, impacting the integrity of the sensor. But by applying a powder-based laser cladding method called direct metal deposition (DMD), the team melted Stellite onto the sensor with a low-power laser as low as 200 W. In addition to the low laser temperatures, the coating was melted to the sensors at only a few scattered points to minimize melting of the sensor material.

The Stellite-powder grain sizes are between 45 and 90 µm for undistorted, crack-free coating, and track widths between 200 µm and 2 mm for precise deposition. DMD was also done in a chamber of the noble gas argon, to prevent the coating’s reaction with the atmosphere during deposition and the generation of gas bubbles. 

O.R. Laser's powder nozzle can also be controlled with ORLAS SUITE—its new CAM software that enables automatic coating of complex workpieces.To learn about O.R. Laser's technologies and services, visit their website

About the Author

Leah Scully | Associate Content Producer

Leah Scully is a graduate of The College of New Jersey. She has a BS degree in Biomedical Engineering with a mechanical specialization.  Leah is responsible for Machine Design’s news items that cover industry trends, research, and applied science and engineering, along with product galleries. Visit her on Facebook, or view her profile on LinkedIn

Sponsored Recommendations

Customizations to Get Standard Motors to Mars

Jan. 10, 2025
Clearly, the Martian environment can be harsh and unaccommodating to systems made to operate on Earth. Through a combination of standard industrial motors and creative collaboration...

No Access for Bacteria: An Inside Look at Maxon's Cleanroom

Jan. 10, 2025
Tiny drive systems for use in the human body have to be built in a clean environment, free of microbiological contamination. Welcome to the GMP cleanroom of maxon, where discipline...

High-Efficiency, Precision Drive Systems for Every Robot

Jan. 10, 2025
Robots assemble devices, explore space, and perform surgeries. To achieve human-like motion and accuracy they need powerful and highly precise drives. Learn about custom-made ...

The Importance of Motors in Transportation

Jan. 10, 2025
As we progress toward more efficient and automated systems, the need for robust and reliable motors in the transportation industry has become more critical than ever. Explore ...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!