The sensing mechanism in an incremental optical rotary encoder consists primarily of a light source, code wheel, and optical detector. As the code wheel turns, a ring of alternating opaque and transparent regions shutters the light between the source and detector, creating a series of pulses.
Measurement precision reflects the mechanical precision of the pattern on the code disk, but is not limited to it. The reason is that, in a quadrature encoder, each opaque region or “line” produces not one, but four distinct reference points. Two points correspond to the leading and trailing edges of the line itself; two additional points correspond to the leading and training edges from the perspective of a second detector. This not only provides higher resolution, four times that of the code disk, but also indicates direction based on which detector responds first.
Questions & Answers
Q: What is the resolution of a 1,000-line encoder?
A: The base resolution is 0.360°. Resolution obtainable by quadrature signaling is four times better, or 0.090°. Electronic interpolation – mathematically predicting position between data points – can achieve even higher resolutions.
Q: How is direction encoded in quadrature signals?
A: In the typical quadrature relationship, counterclockwise (CCW) rotation causes the signal designated as “A” to lead the one designated “B.” B leading A, on the other hand, indicates clockwise (CW) rotation.