Stepmotors now close the loop

June 1, 2006
Stepmotor drive systems are known for their inherent open-loop control simplicity. But compared to servo systems, they perform poorly in applications

Stepmotor drive systems are known for their inherent open-loop control simplicity. But compared to servo systems, they perform poorly in applications requiring high speed, high acceleration, and smooth motion. Moreover, steppers excite mechanical resonance, stall on occasion, and are noisy. One company, however, says these problems are resolved.

Agile Systems, Waterloo, Ont., Canada, developed a new stepmotor control approach, called Silentstep, that lets steppers run like servos while maintaining their inherent simplicity. With Silentstep, stepmotors operate continuously, rather than in incremental steps, deriving position information from motor back-EMF. The motors start up in conventional microstepping mode, then switch over (to Silentstep) at the back-EMF threshold speed. The switchover typically takes place at frequencies well below levels where audible noise and resonance effects are a problem.

Silentstep controllers have either twin full-bridge drive circuits or three half bridges and work with bipolar stepmotors. Using three half bridges reduces the number of transistors from eight to six, allowing the technology to be deployed on conventional bldc motor drivers. The only drawback is that it reduces phase voltage (by half), as well as usable motor speeds.

Silentstep compensates for the phase voltage reduction by using flux-vector control, which gives the ability to implement magnetic field optimization and achieve motor speeds beyond the typical bus voltage limitation. To work, the controller derives motor current commands from the setpoint and actual position and speed. When the magnitude of the voltage vector is maximized, the controller automatically phase adjusts the vector so the motor runs beyond its normal open-loop mode stalling point.

For more information, contact the editor at [email protected].

Sponsored Recommendations

Safety Risk Assessment Guidelines for Automation Equipment

Dec. 20, 2024
This Frequently Asked Questions (FAQ) covers the basics of risk assessments, including the goals of the assessment, gathering the right team to perform them, and several methodologies...

Safety Products Overview

Dec. 20, 2024
The collection of machine safeguarding devices from Schmersal include keyed interlocks, solenoid locks, safety sensors, limit switches, safety light curtains and more.

SAFER Workplace: Stop, Assess, Formulate, Execute, Review

Dec. 20, 2024
Our SAFER Workplace initiative promotes workplace safety, with a heightened focus on machine safety, to reduce the potential of near misses, accidents, and injuries. Behaving ...

The advantages of a Built-in Bluetooth Interface for Your Safety Light Curtains

Dec. 20, 2024
Safety Light Curtains with Bluetooth InterfaceGuido Gutmann, Key Account Manager, Optoelectronic Safety Devices, Schmersal Group, explains the advantages of ...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!