Switch Tips: Membrane-switch basics

Jan. 8, 2004
Membrane-switch pads often serve as a way of giving an operator interface distinctive graphics or an attractive look. The overlay or top layer of the switch is screen-printed with graphics (usually on the back of the overlay for protection from the environment).

Membrane-switch basics

Typical overlay materials include polyester and polycarbonate and may have a thickness ranging from 0.005 to 0.015 in.

Polyester is the usual material of choice for overlays that will be embossed or which will see a large number of actuations (25,000 or more). Overlay thickness tends to depend mostly on the amount of desired tactile feedback. The thicker the overlay, the less the tactile feedback.

Membrane-switch overlays sometimes incorporate embossing to get a better look and add switch functions. There are two basic ways to emboss. The usual way is with metal-to-metal, male and female dies. There are height-of-emboss-area limitations with this method that sometimes make a second method, hydroforming, a possibility. Here fluid pressure applied to ductile blanks forms embossed shapes. This technique is more expensive but fosters design flexibility.

Embossing can produce three different switch profiles: a raised pad, a rim around the key area (often used as a locator feature), and a dome where the keypad takes a hemispherical shape.

There are some limitations on embossed features. The emboss height on a polyester overlay generally ranges from 1 to 2.5 times the thickness of the base material. It is possible to emboss thicker substrates but at the cost of durability. This is due to a thinner wall thickness at the point of stress. The minimum emboss width is eight times the thickness of the base material. Square corners are not possible because they will crack the overlay material.

The typical circuit material for membrane keypads is silver conductive ink screen printed on a polyester substrate. The circuit layer is die cut to the right shape after printing. Alternatively, copper-etched layers or a conventional PCB can also serve as the base circuit.

Membrane-switch material can incorporate surface-mounted LEDs if need be. LEDs are glued to the screen-printed silver conductive traces with a heat-cured conductive epoxy. The height of the LED increases the overall switch thickness by about 0.02 in.

Switch contacts in membrane switches typically carry a rating of 28 Vdc/30 mA max. They comprise a loop resistance of about 100 Ω.

Nontactile switches can be designed with actuation forces starting at 3 oz. The spacer thickness and diameters of the spacer hole determine the actuation force. For example, a switch with a thin spacer and large diameter spacer hole will have a light actuation force.

Some switches incorporate shielding to ward off interference from ESD and EMI. The usual method of shielding is to screen-print conductive ink in a grid on the top of the circuit layer, thus eliminating the need for a separate shielding layer. But when the keypad uses only one circuit layer, a shield comprised of laminated aluminum foil and polyester is less expensive than a printed shield. In either case the shield is thin so it doesn't affect the tactile feel of the switch.

About the Author

Leland Teschler

Lee Teschler served as Editor-in-Chief of Machine Design until 2014. He holds a B.S. Engineering from the University of Michigan; a B.S. Electrical Engineering from the University of Michigan; and an MBA from Cleveland State University. Prior to joining Penton, Lee worked as a Communications design engineer for the U.S. Government.

Sponsored Recommendations

Flexible Power and Energy Systems for the Evolving Factory

Aug. 29, 2024
Exploring industrial drives, power supplies, and energy solutions to reduce peak power usage and installation costs, & to promote overall system efficiency

Timber Recanting with SEW-EURODRIVE!

Aug. 29, 2024
SEW-EURODRIVE's VFDs and gearmotors enhance timber resawing by delivering precise, efficient cuts while reducing equipment stress. Upgrade your sawmill to improve safety, yield...

Advancing Automation with Linear Motors and Electric Cylinders

Aug. 28, 2024
With SEW‑EURODRIVE, you get first-class linear motors for applications that require direct translational movement.

Gear Up for the Toughest Jobs!

Aug. 28, 2024
Check out SEW-EURODRIVEs heavy-duty gear units, built to power through mining, cement, and steel challenges with ease!

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!