Solid-state RF switches

Oct. 12, 2006
The simplest solid-state RF switch employs a PIN diode as a switching element.

Edited by Leland Teschler

PIN diodes are named for a region of undoped intrinsic semiconductor lying between their p and n-type material. This area eliminates capacitance effects between the n and p-type areas that can otherwise lower device impedance at higher frequencies.

A simple PIN diode switch is turned on by applying a dc bias that makes the diode conduct. This lets an RF source pass a signal through the diode to a load. Applying a negative dc bias turns off the diode by widening the diode depletion layer and thus blocks the RF signal. Multithrow switches can be constructed by connecting multiple diodes to a common junction and forward biasing only those in the conducting paths.

An alternative connection scheme puts the PIN diode across the input line in parallel with the load. Here forward bias makes the diode conduct and thus reflect RF energy back to the source. Negative bias lets RF energy bypass the diode and get to the load.

One problem with PIN-diode switches is that they dissipate power when biased on. So RF switches incorporated into integrated circuits are more likely to use MOSFETs rather than diodes as switching elements. The principle of operation is the same: Application of a dc voltage turns the switching element on or off. The fabrication technology used is generally silicon-on-insulator or similar techniques that limit the energy dissipated during switching.

PIN-based switches are complicated to design for use in the microwave range. Thus, RF switches handling signals on the order of gigahertz typically use GaAs switching elements such as MESFETs (metal semiconductor FETs), basically FETs with a Schottky junction for a gate.

There has been recent development work toward RF switches that employ MEMS technology. The typical structure is that of a thin metallic film suspended over a dielectric material that serves as a contact. Application of an electrostatic field pulls the membrane down to touch the bottom piece. (Strictly speaking, a MEMs switch is electromechanical because it has a moving part.) The advantage of this approach is low switching energy and potentially lowcost processing via straightforward IC techniques.

About the Author

Leland Teschler

Lee Teschler served as Editor-in-Chief of Machine Design until 2014. He holds a B.S. Engineering from the University of Michigan; a B.S. Electrical Engineering from the University of Michigan; and an MBA from Cleveland State University. Prior to joining Penton, Lee worked as a Communications design engineer for the U.S. Government.

Sponsored Recommendations

Safeguarding Robots and Robot Cells

Dec. 23, 2024
Learn which standards are relevant for robot applications, understand robot functionality and limitations and how they affect typical methods of safeguarding robots, and review...

Automation World Gets Your Questions Answered

Dec. 23, 2024
Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.

Basic OSHA Requirements for a Control Reliable Safety Circuit

Dec. 23, 2024
Control reliability is crucial for safety control circuits. Learn about basic wiring designs to help meet OSHA, Performance Level (PL), and Safety Integrity Level (SIL) requirements...

Safety Risk Assessment Guidelines for Automation Equipment

Dec. 20, 2024
This Frequently Asked Questions (FAQ) covers the basics of risk assessments, including the goals of the assessment, gathering the right team to perform them, and several methodologies...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!