Machinedesign 7251 512mad10 Fabrisonicpromo 0

Sound Waves Drive 3D Printing of Metals

Dec. 8, 2015
Ultrasonic additive manufacturing (UAM) is a solid-state 3D-printing process for metals that uses sound waves to merge layers of metal foil.
Download this article in .PDF format
This file type includes high-resolution graphics and schematics when applicable.

Fabrisonic uses ultrasonic additive manufacturing (UAM), which is a solid-state 3D-printing process for metals that uses sound waves to merge layers of metal foil. The process produces true metallurgical bonds with full density and works with a variety of metals, including but not limited to aluminum, copper, stainless steel, and titanium.

The UAM process involves building up solid metal objects through ultrasonically welding a succession of metal tapes into a three-dimensional shape, to create the detailed features of the resultant object. The rolling ultrasonic welding system consists of ultrasonic transducers and a (welding) horn. The vibrations of the transducers are transmitted to the disk-shaped welding horn, which in turn creates an ultrasonic solid-state weld between the thin metal tape and baseplate. The continuous rolling of the horn over the plate welds the entire tape to the plate.

By welding a succession of tapes, first side-by-side and then one on top of the other (making sure to stagger layers so that the seams do not overlap), it is possible to build a solid metal part. A machining operation adds features to the part, remove excess tape material, and true up the top surface for the next stage of welds. Thus, the so-called “additive manufacturing” involves both additive and subtractive steps to arrive at a final part shape.

Sponsored Recommendations

The Digital Thread: End-to-End Data-Driven Manufacturing

May 1, 2024
Creating a Digital Thread by harnessing end-to-end manufacturing data is providing unprecedented opportunities to create efficiencies in the world of manufacturing.

Medical Device Manufacturing and Biocompatible Materials

May 1, 2024
Learn about the critical importance of biocompatible materials in medical device manufacturing, emphasizing the stringent regulations and complex considerations involved in ensuring...

VICIS Case Study

May 1, 2024
The team at VICIS turned to SyBridge and Carbon in order to design and manufacture protective helmet pads, leveraging the digitization and customization expertise of Toolkit3D...

What's Next for Additive Manufacturing?

May 1, 2024
From larger, faster 3D printers to more sustainable materials, discover several of the top additive manufacturing trends for 2023 and beyond.

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!