Chip computer

Researchers Build Computer-on-a-Chip Prototype

April 2, 2019
Computers just got a little smaller.

Stanford researchers led an international team of engineers that figured out how to pack many functions of a computer onto a single chip, including processing circuits, memory storage, and a power supply. The prototype’s data processing and memory circuits use less than a tenth as much electricity as comparable electronic devices, yet still perform many advanced computing feats.

The prototype is built around data storage technology called resistive random-access memory (RRAM), which can pack more data into less space than any other form of memory and retains data when the chip hibernates—an energy-saving tactic built into the chip. It is also energy-efficient, so as to not overtax power supplies.

RRAM can also be built atop a processing circuit to combine data storage and computation into a single chip. This adds more energy efficiency and speeds processing.

To improve the storage capacity of RRAM, the Stanford team increased how much information each storage unit, or cell, holds. Memory devices typically consist of cells that store a zero or a one. The researchers devised a way to pack five values into each cell rather than just the two standard options.

As data is continuously written to a chip’s memory cells, they can wear down, scrambling data and causing errors. So the researchers developed an algorithm to prevent such exhaustion. Test show that the algorithm gave their prototype’s memory a 10-year lifespan.

The current prototype is about the diameter of a pencil, still too large for futuristic IoT applications, but the way the prototype combines memory and processing could be incorporated into chips for smartphones and other mobile devices. In fact, chipmakers are showing interest in this new architecture, which was one of the Stanford team’s goals.

Sponsored Recommendations

Flexible Power and Energy Systems for the Evolving Factory

Aug. 29, 2024
Exploring industrial drives, power supplies, and energy solutions to reduce peak power usage and installation costs, & to promote overall system efficiency

Advancing Automation with Linear Motors and Electric Cylinders

Aug. 28, 2024
With SEW‑EURODRIVE, you get first-class linear motors for applications that require direct translational movement.

Gear Up for the Toughest Jobs!

Aug. 28, 2024
Check out SEW-EURODRIVEs heavy-duty gear units, built to power through mining, cement, and steel challenges with ease!

Flexible Gear Unit Solutions for Tough Requirements

Aug. 28, 2024
Special gear units to customer-specific requirements – thanks to its international production facilities, SEW-EURODRIVE can also build special gear units to meet customer needs...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!