New Artificial Atom Could be a Breakthrough in Quantum Computing

Oct. 21, 2004
A team of researchers from Yale University has formed an artificial molecule by binding a single photon to a superconducting device.

The device, engineered to behave like a single atom, was made using integrated circuit fabrication techniques. It's the first experimental result in a field Yale professors Robert Schoelkopf and Steven Girvin have dubbed "Circuit Quantum Electrodynamics."

These superconducting devices can operate as qubits, the basic element of information storage in the field of quantum computing. There is evidence that their qubit was coupling to a microwave photon, sharing energy in much the same way electrons are shared when two atoms combine to form a molecule. Suggested names for the new, combined state are phobit or quton.

Qutons were first made about 12 years ago. But, by using artificial atoms instead of real ones for their qubits, and by using microwave transmission lines instead of optical cavities, the Yale physicists were able to shrink a roomful of experimental apparatus onto a chip that measures less than 1 sq cm. They have also improved the coupling between the resonator and the "atom" by a factor of about 1,000. This will help explore the fundamental inter-actions of light and matter. Soon they will try to control several qubits on one chip, using photons to connect them together in a prototype architecture for quantum computing and quantum cryptography.

Sponsored Recommendations

Safeguarding Robots and Robot Cells

Dec. 23, 2024
Learn which standards are relevant for robot applications, understand robot functionality and limitations and how they affect typical methods of safeguarding robots, and review...

Automation World Gets Your Questions Answered

Dec. 23, 2024
Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.

Basic OSHA Requirements for a Control Reliable Safety Circuit

Dec. 23, 2024
Control reliability is crucial for safety control circuits. Learn about basic wiring designs to help meet OSHA, Performance Level (PL), and Safety Integrity Level (SIL) requirements...

Safety Risk Assessment Guidelines for Automation Equipment

Dec. 20, 2024
This Frequently Asked Questions (FAQ) covers the basics of risk assessments, including the goals of the assessment, gathering the right team to perform them, and several methodologies...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!