An Overview of Additive Fusion Technology

Feb. 14, 2024
From the process itself to material selection and its advantages and applications, additive fusion technology (AFT) addresses the challenges of technical feasibility and commercial viability associated with metal-to-composite transitions.

Key Takeaways

  • Process overview of AFT
  • Material selection
  • Hybrid approach
  • Advantages and applications

Additive Fusion Technology (AFT) combines software, materials and hardware to automate the placement of fiber tapes in additive manufacturing units, followed by a consolidation step in a fusion module to create the final parts.

The key factor distinguishing AFT from traditional additive manufacturing lies in its approach to material placement and post-processing. AFT focuses on utilizing continuous fiber materials in a process that involves automated fiber placement and subsequent molding for consolidation. This multi-step approach ensures precise material distribution and enhances the final product’s quality, strength and versatility.

In this first of a three-part video series, Martin Eichenhofer, CEO and co-founder of 9T Labs, explained to Machine Design that AFT allows for the integration of multiple materials within a single printed object through a hybrid approach of continuous and short fiber reinforcements. While polymers are mainly used in the additive step, the molding phase in AFT enables the mixing of different materials, including metals, to enhance functionality and design possibilities. “We really are agnostic when it comes to materials,” he said. 

The adoption of AFT has shown significant advantages in industries such as aerospace and mobility, particularly in applications requiring metal substitution. By enabling the production of composite parts at scale, AFT addresses the challenges of technical feasibility and commercial viability associated with metal-to-composite transitions. Industries like aerospace and automotive benefit from AFT’s ability to produce lightweight, strong parts with intricate designs in a cost-effective and sustainable manner.

Complex geometries and intricate designs are efficiently handled in AFT through advanced engineering software like fibrify Design Suite, Eichenhofer said. This software allows for precise placement of continuous fiber tapes, optimization of material orientation and interaction with simulation tools for validation and optimization. While the engineering software is currently local-based, providing a comprehensive platform for lightweighting and cost-effective design optimization, AFT’s future roadmap may include cloud-based solutions for enhanced collaboration and workflow management.

Watch additional parts of this interview series with Martin Eichenhofer of 9T Labs:

Part 2: A Deep Dive into Additive Fusion Technology 

Part 3: Additive Fusion Technology: Overcoming Challenges, Looking Ahead 

About the Author

Sharon Spielman | Technical Editor, Machine Design

As Machine Design’s technical editor, Sharon Spielman produces content for the brand’s focus audience—design and multidisciplinary engineers. Her beat includes 3D printing/CAD; mechanical and motion systems, with an emphasis on pneumatics and linear motion; automation; robotics; and CNC machining.

Spielman has more than three decades of experience as a writer and editor for a range of B2B brands, including those that cover machine design; electrical design and manufacturing; interconnection technology; food and beverage manufacturing; process heating and cooling; finishing; and package converting.

Email: [email protected]

LinkedIn: @sharonspielman

X: @MachineDesign

Facebook: Machine Design

YouTube: @MachineDesign-EBM

Sponsored Recommendations

Safeguarding Robots and Robot Cells

Dec. 23, 2024
Learn which standards are relevant for robot applications, understand robot functionality and limitations and how they affect typical methods of safeguarding robots, and review...

Automation World Gets Your Questions Answered

Dec. 23, 2024
Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.

Basic OSHA Requirements for a Control Reliable Safety Circuit

Dec. 23, 2024
Control reliability is crucial for safety control circuits. Learn about basic wiring designs to help meet OSHA, Performance Level (PL), and Safety Integrity Level (SIL) requirements...

Safety Risk Assessment Guidelines for Automation Equipment

Dec. 20, 2024
This Frequently Asked Questions (FAQ) covers the basics of risk assessments, including the goals of the assessment, gathering the right team to perform them, and several methodologies...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!