But what is it good for?

March 7, 2002
Moore's Law (which states that the transistor density of integrated circuits, and hence the computing power of microprocessors, will double every 18 months) marches along.
Editorial CommentJanury 24, 2001

You are reading a special issue of Machine Design devoted entirely to intelligent design and motion control.

Reflecting on the topics in this issue, it is clear that some well-chronicled trends continue. Processors are packing more computing power into less space. Motors with built-in controllers and communication links are commonplace, as are "smart" sensors with processors and network capabilities.

Small, powerful processors also are fueling a move toward embedded computing. One result is that embedded CPUs are now handling trajectory generation for multiaxis machines, as an alternative to a separate motion-control card or drive for each axis. And as prices continue to drop for both processors and memory, computing power continues to spread to other industries.

Increasing miniaturization means that the accuracy and precision of the machines needed to build these smaller components must improve. This is one reason for the continuing trend toward direct-drive motion control. As high precision becomes a mandate in ever more industries, it becomes attractive to eliminate mechanical components that add compliance and increase the possibility of error.

Precision and reliability are especially critical in the burgeoning field of photonics where nanometer-scale movements are the order of the day. Photonics assembly equipment must precisely align light sources and fiber light guides. So there is little room for error.

Tied-in with developments in photonics is the explosive growth of optical networking. Researchers recently demonstrated optical transmission rates as high as 1.0 Tbit/sec (that's tera, as in 1012 bits.) And some researchers have predicted that optical networks with transmission rates as high as 1 Pbit/sec (peta, or 1015 bits) are just around the corner. You can get some idea of how amazingly fast this is by considering that a 1-Pbit/sec network transmits data 1 billion times faster than a 1-Mbit/sec network.

This new, optical world brings with it a whole new set of prefixes. So in addition to kilo, milli, and micro, get ready for nano, pico, and femto.

And although currently there may not be an immediate use for such fast optical networks in motion control, you can rest assured that the applications will be there tomorrow. As with any new technological breakthrough, we humans never fail in our shortsightedness. Case in point; Ken Olson, the chairman and founder of the late, great Digital Equipment Corp., who back in 1977 remarked that "There is no reason anyone would want a computer in their home." Or the engineer at the Advanced Computing Systems Div. of IBM saying of the microchip in 1968, "But what... is it good for?"

, Associate Editor

Sponsored Recommendations

MOVI-C Unleashed: Your One-Stop Shop for Automation Tasks

April 17, 2024
Discover the versatility of SEW-EURODRIVE's MOVI-C modular automation system, designed to streamline motion control challenges across diverse applications.

The Power of Automation Made Easy

April 17, 2024
Automation Made Easy is more than a slogan; it signifies a shift towards smarter, more efficient operations where technology takes on the heavy lifting.

Lubricants: Unlocking Peak Performance in your Gearmotor

April 17, 2024
Understanding the role of lubricants, how to select them, and the importance of maintenance can significantly impact your gearmotor's performance and lifespan.

From concept to consumption: Optimizing success in food and beverage

April 9, 2024
Identifying opportunities and solutions for plant floor optimization has never been easier. Download our visual guide to quickly and efficiently pinpoint areas for operational...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!